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By Feifei Chen and Michael Yu WangA Review of the State of the Art

R
obotics has undergone a profound revolution in 
the past 50 years, moving from the laboratory 
and research institute to the factory and home. 
Kinematics and dynamics theories have been 
developed as the foundation for robot design 

and control, based on the conventional definition of 
robots: a kinematic chain of rigid links.

Currently, the boundaries among materials, struc-
tures, biology, intelligence, and robotics are blurring. 
We have a much wider interpretation of what a robot is. 
The past decade has seen the increasing use of soft 
materials (Young’s modulus on the order of kilopascals 

to megapascals) to build robots, which are generally 
referred to as soft robots. This new generation of robots, 
originally inspired by natural lives, has grown rapidly 
and is enabling new robot abilities for applications 
ranging from wearable devices and biomedical engi-
neering to search and rescue in unstructured environ-
ments [1]–[3].

Instead of relying on sliding or rolling motions as in con-
ventional rigid robots, soft robots produce mobility based on 
the inherent compliance of soft materials. This fundamental 
change enables the integration of multiple functions into 
simple topologies by embedding actuators and sensors to 
build fully functional machines that can perform complex 
tasks. Here, the physical presence of soft robots plays a cen-
tral role in generating adaptable behaviors. The body design 
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in free form is expected to imbue soft robots with program-
mable mechanical properties and desired responses to exter-
nal stimuli, which unlocks new functionalities in the 
paradigm of so-called morphological computation and 
embodied intelligence [4], [5].

The transformative involvement of soft materials in 
robots also poses unprecedented challenges. The increased 
complexities of soft robotic systems, which may come from 
geometry, material, actuation, and their intricate coupling, 
are making conventional theories of robot design poorly 
applicable. The difficulties come not only from the lack of 
simulation and analysis tools to effectively and efficiently 
predict complex mechanical behaviors of soft robots but 
also from the lack of powerful optimization algorithms to 
automate the design process. One must often rely on intu-
itions, experiences, or bioinspiration for soft robot design, 
which can provide only limited scope. Research efforts have 
increasingly been made toward a comprehensive design 
paradigm to bridge the gap from theoretical and algorith-
mic perspectives.

In this article, instead of limiting the discussion to specific 
applications, we articulate the fundamental concepts of design 
optimization for soft robots. We exclude chemical- or materi-
al-level modifications but focus on mathematical design 

approaches to soft robots based on widely available materials. 
State-of-the-art progress is highlighted, with particular 
emphasis on the methods to approach design problems and 
their mathematical representation. The term optimization is 
not necessarily limited to algorithms to solve a formulated 
problem but more generally refers to innovations in any 
design aspect leading to better performance of soft robots. We 
conclude this review with a prospective look at future trends 
for design optimization in soft robotics.

Design Architecture
The entire framework of design optimization for soft 
robots is generally hierarchical and iterative, as presented 
in Figure 1. A high-level task, such as locomotion and 
grasping, can be decomposed into a sequence of motion 
behaviors, including stretching, bending, twisting, or their 
combination. For example, bending motions typically 
dominate a grasping process, while alternating elongations 
and compressions may dominate locomotion. Once the 
desired mechanical behavior is determined, one may for-
mulate it as an inverse design problem to be addressed by 
mathematical programming.

The translation of the physical problem as a mathematical 
optimization problem requires identifying and quantifying 
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Figure 1. The architecture for design optimization of soft robots.
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the objective, variables, and constraints. This process is also 
referred to as modeling. The appropriate model plays an 
essential role in the optimization process by bridging the 
robotic tasks and optimization algorithms. The optimization 
implementation necessitates an integration of the optimiza-
tion model, analysis, and search algorithms. Here, we clarify 
several important concepts that will be mentioned through-
out this review.

Design Objective (Robotic Behavior)
The design objective of a soft robot is the mathematical 
abstraction of desired mechanical behaviors. In general, 
the behaviors can be described by a function of deforma-
tion and force of interest that may vary with time and 
space. For example, a soft actuator may be expected to rep-
licate the motion of human fingers upon activation. The 
pursued robotic behaviors sometimes cannot readily be 
formulated in a mathematical sense. For example, one may 
expect a soft gripper to conform and adapt to unknown 
objects of different sizes and shapes. In this case, the chal-
lenge is to capture the “adaptability” in a rigorous mathe-
matical language.

Design Variable (Robotic Composition)
Design variables are concerned with how designers can 
approach the design problem and refer to the variables tun-
able to improve the design. The design variables of a soft 
robot translate into its composition, including the geometry, 
its material (and metamaterial), and the applied actuation 
field. These tunable variables shape the physical presence of 
soft robots and determine the mechanical behavior of robots 
in the environment under external stimuli. The mathemati-
cal representation of design variables has an important 
impact on the posedness and convexity of the optimization 
problem. All feasible design candidates create the design 
space to be explored.

Design Analysis (Robotic Computation)
Simulation and analysis tools are required to evaluate the fit-
ness of a design candidate. This prerequisite applies to all opti-
mization algorithms. To shed light on practical robot design, 
it is necessary to involve physical properties and working con-
ditions at the evaluation stage, which has been very challeng-
ing for soft robots. Due to the huge complexities of soft 
robotic systems, the evaluation is generally computationally 
difficult and expensive and usually takes the most time during 
an optimization process.

Optimization Method (Robotic Evolution)
Optimization methods are required to guide designers to 
search for the optimal design candidate in the vast design 
space. In addition to knowledge of the fitness of design candi-
dates, the optimization algorithm may call for further infor-
mation, such as gradients and Hessians (usually not readily 
attainable), to accelerate convergence. Designers must always 
address the ubiquitous speed–accuracy tradeoff: more 

accurate information promises a better search direction, but it 
comes at a higher computational cost.

Design optimization is an iterative process. For a design 
candidate described by a set of design variables, one needs 
to evaluate its mechanical behavior by computation. If the 
design objective is not fulfilled in the numerical process, 
optimization algorithms are implemented for the robot 
evolution. The evolution process translates into changes in 
design variables, i.e., a 
new design is generated. 
Finally, the optimized 
design is prototyped, 
e.g., with advanced ma -
nufacturing technolo-
gies, and tested to see 
w het her  the d e s i g n 
achieves the desired per-
formance. If not, a rede-
sign process is required. 
Observations based on 
optimization solutions, 
the manufacturing pro-
cess, and experimental 
results may inspire further refinement of the optimization 
model in terms of its objective or constraints.

Optimization Model
The optimization model can be characterized by its design 
variables, i.e., the designable ingredients of robots. Virtually 
all combinations of design variables are possible implementa-
tions for the design optimization of soft robots, but only some 
design candidates have been investigated. In this section, we 
review how researchers have approached design optimization 
problems from the perspectives of geometry, material, meta-
material, and actuation.

Design Variable: Geometry
The geometry of a robot concerns how the robot should be 
shaped, which generally includes its lengths, areas, and vol-
umes, and undoubtedly plays an essential role in defining the 
robotic behavior. In terms of the complexity and generality of 
the geometric representation, researchers have conducted 
geometry optimization of soft robots on the level of size, 
shape, and topology.

Size optimization represents the initial step and typically 
addresses regular shapes that can be explicitly described by 
parameters such as length, width, height, and angle. The 
exploration of soft pneumatic actuators has offered notable 
examples. The design objective is generally concerned with 
elongation, contraction, bending, and twisting motions, and 
the geometric parameters are related to the shape and 
arrangement of inner chambers. Dämmer et al. [6] described 
the cross section of a linear bellows-type pneumatic actuator 
with a set of parameters [Figure 2(a)] and implemented a gra-
dient-based optimization to decrease the induced maximal 
principal strain for the given output deflections and forces. 

The optimization model  

can be characterized by  

its design variables,  

i.e., the designable 

ingredients of robots.
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The chamber cross section has also been optimized at the size 
level for the 1D bending actuator by Elsayed et al. [11], where 
they aimed to minimize the ballooning effect.

To incorporate the twisting motion in addition to bend-
ing, Wang et al. [13] tailored the widely adopted pneumatic 
networks (often referred to as PneuNets [12]) by shifting 
the chamber arrangement from vertical to oblique and 
investigated how the oblique angle programmed the com-
bined bending and twisting motion. PneuNets were also 
modified in terms of chamber size to handle deformable 
objects using hybrid optimization algorithms, where the 
design objective was to match the deformed shape of 
objects such as a Dixie cup [14].

Shape optimization makes a further step toward design 
space exploration. The space of allowable shapes within 
which designers search does not admit a vector space struc-
ture, which causes an infinite-dimensional problem. Shape 
optimization problems are usually iteratively solved. In other 
words, one starts with an initial guess about a shape and 

gradually evolves it until convergence. This is the case report-
ed in [7], where researchers developed a computational 
model for the inverse design of custom-shaped rubber bal-
loons [Figure 2(b)]. They aimed to find the optimal balloon 
that approximates the target shape as closely as possible upon 
inflation. This inverse design problem was recast as a con-
strained optimization problem and solved by augmented 
Lagrangian methods. The same group further incorporated 
seams into the computational model to reproduce complex 
shapes with sharp creases [15].

Another excellent example of shape-matching design is 
provided by Siéfert et al. in [8], where, instead of iteratively 
solving the optimization problem, the authors developed a 
direct geometric solution based on an analytical model to pro-
gram arbitrary 3D shapes. The key idea is to precisely control 
the spatially varying expansions of soft materials by a well-
designed airway network embedded inside the matrix [Fig-
ure 2(c)]. This work offers a powerful tool to transform soft 
rubbery plates into desired 3D structures.
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Figure 2. The geometry optimization. (a) A linear bellows-type pneumatic actuator described with a set of parameters (left) is 
optimized to minimize the induced maximal (Max.) principal strain (right) [6].  (b) The inverse design of the rubber balloons enables 
them to expand to the desired shapes upon pressurization [7]. (c) By precisely controlling the spatially varying expansions of soft 
materials with a well-designed airway network embedded inside the materials, one can program arbitrary 3D shapes [8]. (d) A cable-
driven soft finger is modeled as a beam, subject to topology optimization (left), and the optimized fingers (middle) are assembled 
to make a soft gripper (right) [9]. (e) A pneumatic soft gripper is composed of an inner chamber made of rubber and an outer layer 
made of Tango (left), and the outer layer is topologically optimized to deliver maximum bending motion for conformal grasping (right) 
[10]. LE: logarithmic strain; TPE: thermoplastic elastomer.
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To enable generally free-form evolution of shapes, e.g., 
changes in the connectivity of inner cavities of a deformable 
body, insight at the topology level is required. In comparison 
with size or shape optimization, topology optimization 
depends less on the initial design and works well when intui-
tive designs fail. Although topology optimization has been 
widely used in traditional computer-aided design as a versatile 
tool, few attempts have been made toward the automatic 
design of soft robots. The main challenge lies in integrating 
complicated soft material properties and actuation fields into 
the optimization framework, which causes difficulties in both 
theory and computation.

As initial attempts, researchers have applied topology 
optimization methods to design soft bending actuators for 
use in grippers driven by cables [9] [Figure 2(d)], [16], 
[17] or pneumatic actuators [10] [Figure 2(e)], [18], [19]. 
In these works, the gripper design problems were simply 
translated into the design of fingers modeled by cantilever 
beams, and their topological shapes were optimized by 
gradient-based algorithms. The optimization results typi-
cally have irregular structural forms and, thus, usually are 
difficult to manufacture using traditional methods such as 
molding and casting. Instead, they can be directly proto-
typed using additive manufacturing technologies [9], [10], 
[17], [18].

These initial attempts at topology optimization for soft 
robots did not fully capture the physics in their optimiza-
tion models, such as the material nonlinearity, interactions, 
and frictions. In this sense, these works in principle still fall 
into the framework of traditional compliant mechanism 
design with topology optimization approaches by Sigmund 
[20] and Wang et al. [21], [22]. The incorporation of non-
linearities of soft materials may further unlock the potential 
of topology optimization for the generative design of soft 
robots [23].

Design Variable: Material
Material represents another dimension in the design space 
to be explored and plays another key role in determining 
the behaviors of soft robots. A straightforward example is 
that, in addition to the geometry-based design, the direc-
tionality of motion can be programmed by combining dif-
ferent materials. From a mechanics perspective, multiple 
materials may imbue a structure with complex deforma-
tion modes under a given load, which enables novel func-
tionalities that are hard, if not impossible, to access using 
a single material. Compared to the geometry approach, 
the material optimization approach may result in func-
tional soft robots with geometrically simple and compact-
sized bodies.

An intuitive case is that one may use fibers to passively 
constrain the deformation of flexible, fluid actuators along the 
user-defined directions to generate differential motions. This 
design concept is akin to the actuation principle of muscular 
hydrostats. Elastomers to fabricate fluid actuators are typically 
isotropic, while the fibers can be treated as an anisotropic 

material. Thus, the fibers can tailor the deformation of the 
actuator through their layout, leading to various motions, 
including extension, contraction, bending, and twisting. In 
[24], Connolly et al. presented a design strategy to track a pre-
defined kinematic trajectory and developed an analytical 
model to identify the optimal fiber layout [Figure 3(a)]. In 
fact, this inherent mechanism has been well explored since 
the preliminary prototypes of McKibben artificial muscles 
[25], [26] and is still being employed in recent soft actuators 
and robots [27]–[31]. The focus of these examples is on the 
fiber layouts, while the fluid channels remain unchanged as 
the nondesign domain.

Among the feasible multimaterial approaches to design 
optimization of soft robots, functionally graded materials 
(FGMs) are opening up new possibilities. Despite being well 
investigated in material science, FGMs recently attracted the 
interest of roboticists because they can combine soft and rigid 
materials empowered by multimaterial printing technologies. 
One of the first efforts to exploit FGMs to design soft robots 
can be found in [32], where Bartlett et al. developed a robot 
powered by combustion and the bodies consisted of nine 
types of materials with gradient Young’s modulus spanning 
three orders of magnitude. The smooth stiffness gradient 
avoids the stress concentration that typically occurs on the 
interface of two significantly different materials [Figure 3(b)]. 
However, the material gradient in the FGMs has yet to be 
optimized with fewer human interventions to fully unlock 
their potential to produce spatially varying stiffness and 
motions upon actuation.

To leverage the full design space spanned by multimateri-
als, free-form distributions of multimaterials and associated 
optimization algorithms are in high demand. Hiller and Lip-
son [33] demonstrated cantilever beams that deflected in pre-
defined profiles by virtue of spatially varying soft and rigid 
materials, and the optimization was implemented with evolu-
tionary search algorithms [Figure 3(c)]. Ma et al. [34] present-
ed a systematic design and fabrication framework for soft 
pneumatic machines, with the desired motions of a heart 
beating upon pressurization, by first optimizing the chamber 
arrangement and subsequently optimizing the multimaterial 
distributions [Figure 3(d)].

The incorporation of active materials may further equip 
soft robots with new functions, although design optimiza-
tion is in its earliest infancy. For example, inspired by bones 
and joints in human fingers, Yang et al. [35] incorporated 
shape memory polymers (SMPs) into the finger design as 
stiffness-tunable joints. The rational design of active materi-
als such as SMPs in soft robots has not been explored much 
and represents a research direction to enrich the functional-
ities of soft robots.

Design Variable: Metamaterial
A metamaterial is generally defined as a material encoded at 
microscopic or mesoscopic scales to exhibit physical proper-
ties, rarely found in natural materials, with various engineer-
ing applications. Metamaterials derive their properties not 
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only from the base material but, more importantly, also from 
the featured structures at the microscopic scale in terms of 
shape, orientation, and arrangement.

Recently, metamaterials have been receiving increasing 
attention in soft robotics. The involvement of metamaterials 
may lead to paradigm shifts in the design of soft robots by 
directly encoding the desired complex motion within the 
material architectures, leading to conformable monolithic sys-
tems [42]. Currently, the rational design optimization of 
metamaterials remains in its early infancy, and we focus here 
on how various metamaterials provide new insight into the 
design of soft robots.

As mentioned, fibers have features of anisotropy and 
can be exploited to program motions of soft robots. By 

assembling fibers with user-defined patterns, general 
anisotropies that span more directions can be achieved. 
Textile fabrics are such examples whose anisotropies are 
directly encoded by the weaving or knitting paths at the 
stage of fabrication [Figure  4(a)]; they have been widely 
used in wearable robotic devices for hand, ankle, and foot 
rehabilitation [36], [43], [44]. Inspired by layered human 
muscles, such as the transverse abdominis, Zhu et al. [45] 
recently presented a new family of fluidic fabric muscle 
sheets based on composite fabric structures that admitted 
design options at multiple scales, adaptability to curved 
structures, and large work densities. They also investigated 
how combinations of the fabric type and stitch design 
modulate the patterns of stretchability.
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Origami and kirigami represent a special category of 
metamaterials that lend themselves to programmable mor-
phing of robots. Origami-based metamaterials are usually 
made by folding thin-walled sheets along predesigned creas-
es to form ridges and valleys [46]. Driving rigid origami by 
vacuuming, artificial muscles were developed in [47] for use 
in soft grippers with excellent load capability. Jeong and Lee 
employed an origami twisted tower to fabricate the fingers of 
a robotic manipulator [Figure 4(b)], which potentially can be 
used to manipulate fragile objects [37]. Rafsanjani et al. [38] 
harnessed kirigami principles to remarkably improve the 
crawling speed of a soft actuator [Figure 4(c)]. The deform-
able kirigami surfaces buckle and induce remarkable direc-
tional frictional properties. Readers may refer to [48] for a 
comprehensive review of soft origami robots.

Slender beams are widely used as basic units in flexible 
metamaterials. The designable arrangements of elastic beam 
elements may lead to desired mechanical behaviors that are 
otherwise difficult to achieve, such as negative Poisson’s ratio 

(auxetics). Mark et al. [39] provided an excellent example 
using auxetic and nonauxetic clutches to simplify the loco-
motion of a soft robot with only one actuator instead of three 
[Figure 4(d)]. More generally, auxetic metamaterials may 
endow a soft robot with the capability of shape matching 
upon actuation using cellular structures, which consist of 
auxetic and nonauxetic units [49].

Elastic beam elements may buckle when subjected to 
axial compressions. This simple phenomenon opens up a 
new avenue for reversible pattern transformations in meta-
materials that consist of networks of elastic beams. This 
mechanism was exploited by Yang et al. [40] in soft grip-
pers to produce several classical motions driven by a single 
negative pressure [Figure 4(e)]. To improve structural stiff-
ness and enhance grasping force, the design was further 
improved in [50], where the output work was taken as the 
objective function.

More generally, a metamaterial derives its properties by en -
coding its constituent microstructures [5]. Schumacher et al. 
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[41] proposed a method to design deformable objects with 
spatially varying microstructures using 3D printing. Opti-
mization was conducted to design tiled microstructures 
by interpolating families of related structures to smooth -
ly vary the material properties over a wide range [Fig-
ure  4(f )]. However, the microstructure configurations 
were limited by the prescribed family. The microstructure 
design may further benefit from unconstrained topol-
ogy optimization with natural interconnections [51] 
and consideration of large deformation [52] and buckling 
phenomena [53].

Design Variable: Actuation
Actuation plays an equally important role in design 
approaches for soft robots by directly determining the exter-
nal stimuli. From the perspective of mechanics, actuators 

define the form, magni-
tude, and direction of the 
input loads applied to a 
soft robot. Various actu-
ation technologies in soft 
robotics introduce new 
opportunities and chal-
lenges. Unlike rigid ro -
bots, where the input 
force and torques are ap -
plied only at the joints, 
soft robots can be driven 
by mechanical loads and 
more often by active ma -
terials that are responsive 
to multiple physical fields, 

which offers designers more freedom to modulate the actu-
ation fields.

Cable tension and pneumatics represent the traditional 
actuation technologies in soft robots. Skouras et al. [54] 
developed a method to automate the design of cable-driv-
en deformable characters that exhibit the desired defor-
mation behaviors. The locations of cables on the character 
and material distribution were simultaneously optimized, 
which made the character deform to the target shape [Fig-
ure 5(a)]. Hiller and Lipson [33] proposed the concept of 
volumetric actuation materials for a pneumatic locomo-
tive soft robot. Evolutionary algorithms were used, the fit-
ness function taken to be the moving distance of the 
center of mass.

Dielectric elastomer actuators (DEAs), which form a 
classic category of electric active polymers, can generate 
large deformation when subjected to external high voltag-
es [59]. Due to their advantages of large deformability and 
rapid response, DEAs have been widely used in soft 
robotic systems [60], [61]. However, current DEA design 
paradigms are mostly based on people’s intuition or expe-
riences, and a systematic mathematical modeling and 
optimization methodology is still lacking to exploit their 
actuation potentials for the desired motion tasks. 

Hajiesmaili and Clarke [55] made a first attempt by 
applying gradient electric fields to DEAs along the thick-
ness direction through a layer-by-layer fabrication, and 
voltage-tunable negative and positive Gaussian curva-
tures were produced [Figure 5(b)].

More generally, Chen et al. [56] recently developed 
an automatic design methodology to maximize the 
displacements of interest of DEAs by topology optimi-
zation of the spatially varying electric fields. The opti-
mized design remarkably improved the output 
displacements by up to 75% compared to their intui-
tive counterparts, with applications in triggering 
planar sheets to shape-morph into the desired 3D con-
figurations [Figure 5(c)]. A density-based topology 
optimization method was applied to the automatic 
design of DEAs by Wang et al. [62]. In addition, meta-
structures encoded with designable anisotropies can 
be combined with DEAs to produce programmable 
deformations, as demonstrated by a unidirectional actu-
ator in [63].

Magnetic fields are also widely used to drive soft 
robots by providing a far-field actuation controlled in 
an untethered manner, and their advantages are long-
range, dexterous, precise, fast, and robust characteris-
tics. The magnetically responsive materials are expected 
to largely deform, navigate in complex workspaces, and 
perform specific tasks. To program their deformations, 
a popular avenue is to embed magnetic particles into a 
soft matrix to create spatially varying magnetic actua-
tions and lead to the desired motions. Kim et al. [64] 
offered a delicate fabrication solution by directly encod-
ing the layout of ferromagnetic particles in the printing 
process. Lum et al. [57] developed a design methodolo-
gy to automatically generate the required magnetization 
profile and actuating fields, so that a soft cantilever 
deformed to the desired shapes [Figure 5(d)]. Recently, 
Tian et al. [58] employed a topology optimization 
approach to automate the layout design of the ferro-
magnetic domain. The objective function consists of 
subobjective functions for kinematics and stiffness 
requirements. The optimization method was verified on 
a gripper [Figure 5(e)].

Integrated Design
Although we have classified the optimization model of 
soft robots in terms of design variables, including geom-
etry, material, metamaterial, and actuation, the boundar-
ies among these variables are not clear. A metamaterial 
deals with both geometry and material at a small scale. A 
spatially varying actuation field is usually embodied 
within the geometry or material. This is the case for 
pneumatic actuation, where the pressurization is closely 
associated with the chamber geometry, and magnetic 
actuation, where the external magnetic field is dis-
tributed on the 3D distributed ferromagnetic domain. 
Thus, an integrated strategy for design optimization is 

Soft robots provide 

excellent examples 

of design-dependent 

problems, where the 

actuation is typically 

coupled with soft bodies.
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necessary, and consideration of a single design variable 
generally does not suffice.

In the context of topology optimization, the applied loads 
may depend on the specific design candidates, which are 
generally referred to as design-dependent problems. The load 
dependency has been difficult to address, even in cases of 
linear elasticity [65]. In general, all structures involving solid 
and fluid interactions carry such design-dependent loads. 

Soft robots provide excellent examples of design-dependent 
problems, where the actuation is typically coupled with soft 
bodies. Thus, designers must cooptimize the actuation fields 
with the structural features, and powerful algorithms are in 
high demand.

Furthermore, the morphology of a soft robot can be 
codesigned with the control strategies, since its perfor-
mance is concurrently determined by the soft bodies, 

Input and Target
Shapes

Actuator
Initial Placement

Actuator Location
Optimization

Material
Optimization

Fabricated
Deformable Model

(a) (b)

(d) (e)

(c)

2.5 kV

15

12

9

D
es

ig
n

O
bj

ec
tiv

e 
(m

m
)

6

3

0
1 30 60 90 120 150

Iteration Number

Desired Time-Varying
Shapes

Programming Method Magnetization Profile

Magnetic Field Inputs

Define Desired
Kinematics

Represent m (s),
B(t ), and Bgrad(t )
With Fourier Series

Optimize Fourier
Coefficients to
Obtain m (s), B(t ),
and Bgrad(t )

Fabricated Material
Based on
Optimized  m (s)

t = t5

t = t4

t = t3

t = t2t = t1

Step 1

Step 2

Step 3

Step 4

m (s)

B5(t = t5) B4(t = t4)

B2(t = t2)
B1(t = t1)

Equivalent
Representation

N
S

No Magnetic Field

Response to Magnetic Field

B

Figure 5. The actuation optimization. (a) The automatic design of cable-driven objects to produce physical replicas of the designed 
characters [54]. (b) Shape-morphing with dielectric elastomers is achieved by gradient electric fields along the thickness direction (top), 
which results in tunable Gaussian curvatures (bottom) [55]. (c) An automatic design methodology to maximize the displacements 
of interest of DEAs is enabled by topology optimization of the external spatially varying electric fields (left). The optimization process 
(middle) creates a design that triggers a planar sheet to buckle into 3D shapes upon electric activation (right) [56]. (d) A programming 
methodology automatically generates the required magnetization profile and actuating fields, so that soft magnetic materials deform to 
the time-varying shapes [57]. (e) A soft gripper made of ferromagnetic soft elastomers performs the desired motions from the reference 
state (top) to a deformed state (bottom) by optimizing the ferromagnetic domain using a topology optimization approach [58]. 

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 08,2021 at 00:56:15 UTC from IEEE Xplore.  Restrictions apply. 



36 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  DECEMBER 2020

interactions, and control signals. Deimel et al. [66] inves-
tigated the feasibility of codesigning the morphology of 
soft hands and their control strategies for grasping and 
found that the codesign always outperformed the coun-
terpart optimization limited to only one design domain. 
Spielberg et al. [67] proposed a “learning-in-the-loop 
optimization” design method that allows for the coopti-
mization of the controller and material parameters, using 
differentiable simulation techniques. These works repre-
sent initial attempts to create an end-to-end design para-
digm for soft robots and should be further generalized to 
more complicated scenarios and validated through physi-
cal experiments. 

Design Space Representation
To incorporate the physical design variables into an optimi-
zation model, a first prerequisite is the mathematical repre-

sentation of the design 
space, which is spanned by 
the aforementioned design 
variables. The representa-
tion should, in general, be 
able to describe all candi-
dates in the full design 
space in a unified mathe-
matical framework.

In the framework of 
topology optimization, to 
describe an arbitrary 
topological shape, two 
classes of representation 
methods have been wide-
ly used. The first category 
is density-based meth-
ods, where the design 

variables are represented by the continuous “artificial den-
sity” of 0–1 [68], [69]. Depending on the physical prob-
lem, the spatially varying density may describe the 
existence or removal of a material or an actuation field, 
and its distribution is typically discretized by finite ele-
ments and interpolated using shape functions. The other 
representation approach uses an implicit description of 
boundaries to parameterize the geometry, i.e., level-set-
based methods that implicitly define the interfaces 
among material phases or actuation fields by iso-contours 
of a level-set function [70]–[72]. This implicit function 
enables a crisp description of the free-form boundaries. In 
comparison with explicit boundary descriptions, level-set 
functions enable the much more convenient tracking of 
topological changes.

When dealing with structural shape and topology optimi-
zation on free-form surfaces, the conformal mapping theory 
originating from differential geometry on the Riemannian 
manifold can be combined with topology optimization theo-
ries to recast the manifold embedded in the 3D space as a 2D 
topology optimization problem in the Euclidean space. 

Ye et al. [73] provided a unified level-set-based computa-
tional framework for the generative design of free-form 
structures by conformally mapping the manifolds onto a 2D 
rectangle domain where the level-set function is defined, 
which allows for the convenient use of conventional compu-
tational schemes for level set methods.

Optimization Implementation
To explore the vast design space spanned by the geometry, 
material, and actuation fields, optimization tools that can 
automatically search for the optimal design candidates are 
essential. Powerful optimization algorithms are expected to 
refine the existing designs and, more importantly, create 
novel free-form designs that are otherwise hardly attainable 
by human intuitions or experiences. As summarized in 
Table 1, we organize the referred works in the “Optimization 
Model” section in terms of the design variable, report the 
employed optimization methods, and briefly comment on 
their generality and applications.

Simulation and Analysis
An important prerequisite to the implementation of 
optimization algorithms is the simulation and analysis 
tool that enables designers to evaluate the performance 
of the current robot design. This prerequisite has been 
very challenging for soft robots, mainly due to the non-
linearity, multiphysical coupling, and complex interplay 
between multiple bodies and the environments. In gen-
eral, one can hardly derive analytical (or semianalytical) 
solutions for the kinematics of a soft robot but must 
resort to numerical computation. The analytical solu-
tions listed in Table 1 are case specific or simplified by 
assumptions such as linearity. Nonlinear finite element 
analysis has dominated because it can accurately capture 
complex mechanical behaviors. However, nonlinear 
solvers tend to suffer convergence issues and are usually 
limited to relatively small deformations. In addition, the 
computational cost is very high, which hinders efficient 
evaluations of designs.

Many attempts have been made to perform fast and robust 
simulation. Instead of computing the continuous deformation 
fields, Hiller and Lipson [77] applied nonlinear relaxation 
where the structure was represented as a network of basic ele-
ments, including springs, beams, and masses. However, the 
parameter identification of the elements is a great challenge, 
and various actuation technologies can hardly be incorporat-
ed into the framework.

Based on the finite element method (FEM), Duriez 
and colleagues [78] have developed a well-known phys-
ics-based simulation engine, SOFA, which simulates the 
deformation of soft robots by progressively solving a qua-
si-static equilibrium function for each sample time. The 
method was recently further improved to achieve real-
time computation with a reduced model [74] and has 
been verified on real soft robots [Figure 6(a)]. The com-
putation efficiency requires further improvement, and 
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the complicated interactions of soft robots with the envi-
ronment need to be captured.

An alternative approach is to transform the actuation of 
soft robots into a geometric change. Recently, Fang et al. 
[75] attempted to solve the kinematics of soft robots from a 

geometry approach, and their framework incorporated 
cables, DEAs, and pneumatic actuations using varying line, 
area, and volume elements, respectively [Figure 6(b)]. The 
properties of multiple materials are geometrically modeled 
by calibration, and the kinematics solving is recast as a 

Table 1. A summary of some representative works on soft robot design optimization.

Design variable 

Objective Actuation 
Design 
Space Analysis 

Optimization 
Method Generality Application References4 Y ★ /

4 Stress Pneumatic Size N-FEM Gradient + Linear   
actuator 

[6] 

4 Bending Pneumatic Size N-FEM Enumerative + Bending  
 actuator 

[11] 

4 Twisting Pneumatic Size N-FEM Enumerative + Combined 
bending and 
twisting

[13]

4 Y Bending Pneumatic Size N-FEM Hybrid + Gripper [14] 

4 Shape  
matching 

Pneumatic Shape N-FEM Gradient ++ Inverse  
shape  
design 

[7] 

4 / Shape  
matching 

Pneumatic Shape Analytical N/A +++ Inverse  
shape  
design 

[8] 

4 Bending Cable Topology L-FEM Gradient +++ Gripper [9], [16], [17] 

4 Bending Pneumatic Topology L-FEM Gradient +++ Gripper [10], [18], [19]

Y Extension,  
bending, 
twisting 

Pneumatic Size Analytical Nonlinear 
least  square

+++ Finger [24] 

Y Gradient  
stiffness 

Combustion Size N-FEM N/A + Conceptual [32] 

Y / Bending, 
 extension 

Cable, 
 pneumatic

Topology N-FEM Heuristics ++ Actuator [33] 

Y Shape  
matching 

Pneumatic Topology N-FEM Gradient +++ Artificial  
heart 

[34] 

★ Shape  
matching 

Compression Size N-FEM N/A ++ Not specific [49] 

★ Output work Pneumatic Size N-FEM Gradient + Gripper [50] 

★ Shape and  
force 

Pneumatic Size Analytical Inspiration ++ Artificial  
muscle 

[45] 

★ Microstructure 
 material  
property

N/A Topology L-FEM Gradient +++ General [41] 

Y / Desired  
motion 

Cable Topology L-FEM Gradient +++ General [54] 

/ Gaussian  
 curvature 

DEA Size N-FEM N/A ++ General [55] 

/ Point  
 displacement 

DEA Topology N-FEM Gradient +++ Not specific [56], [62] 

/ Shape  
matching 

Magnetic Shape N-FEM Gradient ++ General [57] 

4 / Bending Magnetic Topology L-FEM Gradient +++ Gripper [58] 

:4  geometry; :Y  material; ★: metamaterial; :/  actuation; L-FEM: linear FEM; N-FEM: nonlinear FEM; N/A: not applicable. 
Generality is described by the qualitative evaluation scale, +++, ++, +, from highest to lowest values.
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constrained optimization problem. This geometry 
approach suffers from the limitation that it is based on a 
linear blending method; thus, it cannot well capture defor-
mation with large strains.

To predict the dynamic behaviors of multiple bodies, 
Macklin et al. [76] further developed a simulation framework 
for hybrid rigid and soft bodies, in consideration of contacts 
and frictions, using a nonsmooth Newton method to address 
the underlying nonlinear complementarity problems. The 
nonlinear dynamics models of different bodies were coupled 
through a smooth isotropic friction model, and a comple-
mentarity preconditioner was applied to improve the conver-
gence. To model the pressure loading, the authors adopted an 
activation function that applies a uniform internal volumetric 
stress to the domain of interest [Figure 6(c)]. However, more 
physical experiments need to be conducted to validate the 
computation framework.

Despite these attempts, there is no fast and effective 
simulation tool for the computation of soft robots, and 
this has been a major barrier to their design optimization. 
Some portable solutions have been developed, but they do 
not represent a universal solution. The ideal simulation 
tool is expected to have high efficiency and acceptable 
accuracy, robustness in a wide variety of problems, 
numerical stability, and the capability of addressing 

various actuation fields, multiphysics, nonlinearities, and 
interactions with the environment.

Optimization Method
The vast design space of soft robots is extremely difficult for 
designers to manage. To explore the space and identify the 
(locally) optimal design, one usually starts from an initial 
guess and updates the existing design with a better one until 
the algorithm converges to a feasible solution or the pre-
scribed objective is fulfilled. The search direction is crucial, 
and designers typically must conduct a sensitivity analysis. In 
the strategy of line search or trust region, one may define the 
direction of search based on the information of the objective 
function and its gradients or Hessians, which require that the 
problem is differentiable and twice differentiable, respective-
ly. The gradient-based methods include the steepest descent 
and conjugate gradient as employed in the works [9], [10], 
[16], [17], [56], while Newton’s method requires information 
of the Hessian matrix.

Although gradient-based optimization algorithms tend to 
get stuck in local optima, they have better scalability to the 
number of variables, which is particularly advantageous for 
handling large-scale problems. This is generally the case for 
topology optimization of soft robots with an extremely large 
number of design variables. There are numerous methods to 
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Figure 6. The simulation of kinematics and dynamics of soft robots. (a) A physics-based simulation engine, SOFA, realizes real-time 
simulation with a reduced model [74]. (b) A geometry approach to transforming the kinematics of soft robots into geometric change, 
which incorporates cables, DEAs, and pneumatic actuations using varying line, area, and volume elements respectively [75]. (c) The 
dynamics simulation of a soft gripper with robust contact coupling between the gripper and the object [76]. 
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obtain the gradient information, including the simplest finite 
difference method in a numerical manner and the direct 
method and adjoint method in an analytical manner. Readers 
may refer to [79] and [80] for a comprehensive review on 
methods of sensitivity analysis of computational models in a 
unified mathematical framework.

Since soft robots have high nonlinearities in terms of 
geometry, material, and multiphysical fields, the gradients 
and Hessians of structural responses with respect to the 
associated design variables sometimes can be elusive to 
derive (if they exist). In addition, for discrete systems in 
which the derivative of the objective with respect to the 
design variables does not exist, gradient-based methods do 
not apply, e.g., for jamming-driven soft robots, where the 
behavior of jamming particles can hardly be captured by 
continuum mechanics.

There may be constraints imposed on the design 
optimization problems of soft robots, related to stress, 
mass, volume, and manufacturing. In the optimization 
model, one may combine the constraints as penalty 
functions with the objective function to translate the 
problem into an unconstrained one and solve it using 
the Lagrangian method. The augmented Lagrangian 
method is more widely used, especially in the field of 
topology optimization, since it helps suppress the ill 
conditioning by incorporating explicit Lagrange multi-
pliers into the objective function.

Recently, evolutionary algorithms, e.g., genetic algorithms, 
have become a popular alternative approach in the design 
optimization of soft robots. This approach is essentially heuris-
tic and does not require knowledge of gradients. Researchers 
have provided examples of evolutionary algorithms employed 
to design soft manipulators [81], joints [82], locomotion 
robots [33], [83], [84], and DEAs [85], [86] by stochastically 
exploring the design space [87]. With a representation, e.g., the 
Gaussian mixtures, genetic algorithms typically produce new 
designs by mutating or combining existing ones. The key step 
is the selection of existing designs to combine, e.g., the deter-
ministic crowding selection method in [33].

The use of evolutionary algorithms does not exclude the 
computation of soft robots. In other words, when evaluating 
the fitness of each new design, one still must perform nonlin-
ear simulation and analysis of the physical model to guide the 
search process. Without knowledge of the gradients, evolu-
tionary algorithms usually suffer from poor scalability, pre-
mature convergence, and slow convergence speed, which may 
result in extremely high computational costs for large-scale 
design variables of soft robots.

Learning from nature is another alternative approach when 
rational design optimization is difficult, i.e., the so-called bio-
inspired design. Natural intelligence is the delicate result of the 
long-term evolution of a body and a brain together. Many 
examples of bioinspired soft robots have been offered based on 
learning from octopuses [88], [89] and elephant trunks [90], 
[91], but many of them are limited to a copy of natural organ-
isms instead of engineering replicates created based on the 

inherent physical principles [92]. This phenomenon is mainly 
caused by the lack of powerful and reliable actuators and mul-
tifunctional materials on par with natural counterparts. Never-
theless, designers can greatly benefit from bioinspiration by 
identifying key principles and transforming them into the 
design of soft robots.

Discussion and Future Outlook
Despite progress on the design optimization of soft robots, 
significant research gaps need to be filled to create new robots 
that can perform complex tasks in practical applications. 
Here, we list some main limitations.
1)  The optimization model is usually simple and restrictive, 

based on either the geometry space, material properties, 
or simplified robotic behaviors. The soft robot design 
involves strong interplay among geometry, material, 
structural conditions, and actuation paths to achieve 
motion and power performance customized for a partic-
ular class of tasks the robots are expected to perform. 
Current optimization models can provide only limited 
insights into the design problems.

2)  There is no effective, efficient, and robust simulation 
tool to rapidly evaluate the performance of a design 
candidate. The large deformation in the material of soft 
robots typically induces nonlinearities, multiphysical 
coupling, and stability issues. Their full kinematics and 
dynamics are complex mechanics problems that are dif-
ficult to tackle.

3)  Reliable and robust optimization algorithms have not been 
developed. The conventional optimization methods based 
on gradients require a great deal of mathematical reason-
ing. Heuristic algorithms promise a feasible solution, but 
their poor scalability cannot handle large-scale optimiza-
tion problems. The potential of optimization to create new 
designs for soft robots remains to be explored.
These limitations also point to potential future research 

efforts and prospects, as these problems may be addressed 
from the following perspectives.

Modeling of Soft Active Materials
Soft active materials in response to external stimuli are 
increasingly used in the construction of soft robots, as sum-
marized in recent articles [93]–[95]. Structural engineering 
of these materials is enabling novel controllable mechanical 
responses and extending the functionalities of soft robots. 
However, many material systems have no mechanical mod-
els to mathematically describe their properties. To be readi-
ly encoded in optimization, the mechanical model is 
expected to be simple and sufficient to capture the key 
material properties.

Modeling of Robotic Behaviors
Performing a given task generally requires a sequence of 
movements. An analog can be found in the rigid robot 
design. Rodriguez and Mason translated the desired 
mechanical function of an end effector for manipulation 
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into a sequence of contact constraints in a geometry 
sense, and they subsequently derived the shape of the 
effector by synthesizing these constraints in a field 
vector [96]. The key insight was to create an extended 
space spanned by the Cartesian product of the configu-
ration space of the mechanism and its workspace. In the 
future, the workspace of a soft robot when performing a 
given task, instead of only one working state as in most 
existing studies, may be incorporated into the optimiza-
tion model.

In some scenarios, the physical model of soft robots may 
not be fully specified, e.g., when it depends on interactions 
that are unknown at the stage of formulation. Instead of 
guessing about the uncertain quantities, designers may expect 
more robust solutions by introducing extra knowledge of the 
quantities into the model. For example, the interactions 
between a soft gripper and objects may be characterized by a 
number of possible scenarios with different contact condi-
tions [9], and the probabilities of each scenario can be esti-
mated through experimental tests. Therefore, one may 
employ stochastic optimization algorithms to quantify these 
uncertainties so that the model can be optimized to generate 
the desired performance.

Efficient Simulation Tools
The major concerns for the simulation of soft robots are com-
putational cost, convergence, and stability. In addition to 
large-scale computation, simulation may suffer from conver-
gence issues. Since soft robots typically experience large 
deformation, extensive distortions may occur locally, thin 
members may easily buckle, and there may be multiple stable 
solutions. These phenomena usually need to be addressed 
case by case, which hinders the automatic evaluation in an 
optimization loop.

In the field of computer graphics, people usually need 
to produce physically plausible solutions. In particular, 
simulation tools developed to animate deformable bodies 
are promising to lend themselves to simulations of soft 
robots [97], [98]. In their simulation framework, analysis 
problems are commonly modeled as constrained optimi-
zation problems, refined by preconditioning treatments, 
decomposed into a set of subproblems, and iteratively 
solved by various algorithms, such as sequential qua-
dratic programming. Recently, Hu et al. [99] developed  
ChainQueen, a real-time differentiable physical simulator 
for soft robots  based on the moving least-squares mate-
rial point method. The differentiable simulator can be 
naturally incorporated into gradient-based optimization 
algorithms to allow for the codesign of soft robots. How-
ever, these promising simulation frameworks have not 
been well verified in physical scenarios. In addition, 
commonly used computational tricks in the context of 
computer graphics for numerical convergence and speed 
must be carefully addressed according to physical laws, 
and more actuation technologies should be encoded into 
the simulation framework.

Powerful Optimization Algorithms
Mathematical formulations of design optimization for soft 
robots can be addressed in the framework of current optimi-
zation theory [100], except they are generally complicated and 
characterized by large scale, nonlinearity, nonconvexity, and 
possibly discontinuity and uncertainty. The optimization 
model may be ill conditioned, and the sensitivity of the objec-
tive to the design variables can be elusive to obtain. The theo-
ry of topology optimization from a structure or mechanism 
perspective can help lay a foundation for design optimization 
of soft robots by further incorporating the nonlinearities and 
various actuation technologies into the framework. 

Selection and development of optimization algorithms 
largely depend on the optimization model. There is no uni-
versal solution; instead, people need to employ appropriate 
algorithms for the formulated problem. For continuous and 
smooth design objective and variables, gradient- and Hessian-
based algorithms are preferred to find (locally) optimal solu-
tions. For discrete problems, the design space is not 
continuous, and heuristic algorithms may apply. When the 
optimization problem is not deterministic, stochastic optimi-
zation techniques should be developed. Tradeoffs between 
convergence and storage and between robustness and speed 
are always important numerical issues in the optimization 
implementation.

Conclusions
Soft robot design rests on the twin pillars of material–struc-
ture and properties–performance relations, in an analogy to 
the well-known Olson’s linear concept of “materials by 
design.” The process of relating materials to structure is essen-
tially a modeling simulation task, while the process of relating 
properties to performance is effectively a synthesis optimiza-
tion exercise. Establishing optimization-based design meth-
ods is an important step toward enabling the rapid and 
concurrent design for both materials and machines with the 
potential for significant advancement.

The performance of soft robots can be enhanced by 
exploring the ample design space offered by geometry, mate-
rial, metamaterial, and actuation. With the support of high-
performance computing, robust and efficient simulation tools 
and optimization algorithms are essential. Once promising 
designs are identified, their practical implementation may 
require advanced technologies for fabrication and manufac-
turing. Advances in multimaterial 3D printing are promising 
to address the fabrication challenges.

In the long term, an end-to-end design framework will 
incorporate robot morphologies, interactions with the environ-
ment, and control signals. Optimization-based design methods 
will encompass a unified mathematical representation of the 
state variables and physical laws of soft materials, powerful sim-
ulators, and optimization algorithms, which open up new possi-
bilities of encoding complex behaviors of a soft robot within its 
physical body. We have proposed possible research prospects 
with an expectation that design optimization tools will empower 
soft robots with currently unforeseen functionalities.
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